

1

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Object-oriented programming

Course

Field of study

Education in Technology and Informatics

Area of study (specialization)

Level of study

Second-cycle studies

Form of study

full-time

Year/Semester

1/1

Profile of study

general academic

Course offered in

polish

Requirements

compulsory

 Number of hours

Lecture

15

Tutorials

Laboratory classes

30

Projects/seminars

Other (e.g. online)

Number of credit points

4

Lecturers

Responsible for the course/lecturer:

dr hab.inż Agnieszka Rybarczyk

tel. (0-61) 665-3029

e-mail: Anieszka.Rybarczyk@put.poznan.pl

Wydział Informatyki i Telekomunikacji

ul. Piotrowo 2,60-965 Poznań,

Responsible for the course/lecturer:

 Prerequisites

The student should have a basic knowledge about basic computer programming and be familiar with the

basic terminology and basic methods used to solve simple programming tasks. Student should possess

skills in solving basic problems and in implementing, modifying and testing computer programs on their

own. He or she should have the ability in acquiring knowledge from specific sources. He or she should

understand the necessity of constant extending of programming knowledge. In the scope of social

competences the student must present such attitudes as honesty, responsibility, perseverance,

cognitive curiosity, creativity, personal culture, respect for other people.

2

Course objective

1. To become familiar with the object-oriented programming methodology. Acquiring practical skills in

designing and implementing, runing and testing object-oriented programs.

2. To provide knowledge to students about object-oriented programming on the basis of C++

programming language on the beginner and intermediate level.

3. Develop students’ skills in solving basic algorithmic problems and the skills concerning the division of

complex problems into the elementary steps that can be programmed in a given language.

Course-related learning outcomes

Knowledge

1. Student has extended and deepened knowledge of mathematics, physics, chemistry needed in the

technical area, useful for formulating and solving complex tasks in the field of technical and IT

education.

2. Student has knowledge in the area of computer aided technical education.

3. Student has an orderly, theoretically based general knowledge of algorithms, computer system

architecture, operating systems, network technologies, programming languages, graphics, artificial

intelligence, databases, decision support, learning systems and software engineering.

Skills

1. Can use the acquired mathematical knowledge to describe processes, design models and implement

algorithms.

2. Student has the ability to self-study and can determine the directions of further learning.

3. Student has the ability in acquiring information from literature, databases and other sources (in

his/her native language and English), integrate it, interpret and critically evaluate it, draw conclusions

and formulate and fully justify opinions.

Social competences

1. Understands the necessity of learning new skills and rising her or his qualifications. Can inspire and

organize the learning of others.

2. Can interact and work in a team, assuming different roles.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

1. Evaluation of the quality of the programming project.

2. Evaluation of knowledge by test.

Programme content

The program of lectures includes the following issues.

3

Introduction to the programming languages and paradigms; paradigm definition, discussion and

presentation of the object-oriented paradigm. Object-oriented programming rationale resulting from

the analysis of software crisis sources. The idea of a new programming paradigm that supports the

design of high quality programs. Searching for an optimal programming language and methodologies

suitable for building universal, reusable software modules. Discussion of object-oriented approach. Brief

presentation of the history of object-oriented languages. Definitions of basic object concepts: object,

attributes (variables) of an object, object methods, object method calls, class interfaces, objects as class

occurrences. Introduction to C++. The differences between C and C++. Comparison of solutions to simple

problems in a functional and object oriented paradigm. Definitions: class components, static class

components, access modifiers. Examples of defining classes include: definitions of class constructors and

destructors, operators overloding, variables and class methods. Encapsulation as a mechanism for

limiting relationships between software modules. Friend classes, methods and operators in C++. Types

of operators dedicated for copying complex objects. Overloaded operators, streaming data input and

output operators. Class inheritance and subtype relation between classes. Definition of new features of

derived classes, ovverriding methods and variables. Inheritance: base and derived classes, single and

multiple inheritance, virtual inheritance. Virtual functions, defining, calling, abstract classes. Exception

handling. Function templates. Class templates. Container classes.

During the laboratories students will learn about programming environment and start writing simple

and more advanced programs. Next, students in two-person teams will implement advanced task

(programming project) which presentation will take place during the last laboratory.

Teaching methods

1. lecture: presentations with numerous examples of basic and advanced C++ programs.

2. laboratories: exercises, solving task, practical exercises, discussions, teamwork.

Bibliography

Basic

1. Programowanie zorientowane obiektowo, Bertrand Mayer, Helion, Warszawa, 2005

2. Metody obiektowe w teorii i praktyce, Ian Graham, WNT, Warszawa, 2004

3. Język C++, Bjarne Stroustrup, WNT, Warszawa, 1994

4. Thinking in C++, B. Eckel, Helion 2003.

5. Programowanie obiektowe, Peter Coad, Edward Yourdon, Read Me, 1994

6. Analiza obiektowa, Peter Coad, Edward Yourdon, Read Me, 1994

7. Nowoczesne projektowanie w C++, Andrei Alexandrescu, WNT, 2005

8. Symfonia C++, J. Grębosz, Oficyna Kallimach, Kraków, 2001.

4

Additional

1. Język C++, J. Kisilewicz, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2005.

2. Wprowadzenie do programowania w języku C++, J. Kniat, WPP, Poznań, 1995

3. Pasja C++, J. Grębosz, Oficyna Kallimach, Kraków, 2001

4. Programowanie w języku C++, J. Kniat , Nakom, Poznań, 2002.

5. Szkoła Programowania Język C++, S. Prata, Robomatic, 2002

Breakdown of average student's workload

 Hours ECTS

Total workload 47 4,0

Classes requiring direct contact with the teacher 32

Student's own work (literature studies, preparation for

laboratory classes/tutorials, preparation for tests/exam, project

preparation)
 1

15

1
 delete or add other activities as appropriate

